Excellent Catalytic Performances of SBA-15-supported Vanadium Oxide for Partial Oxidation of Methane to Formaldehyde

Baomin Lin, Xiaoxing Wang, Qian Guo, Wei Yang, Qinghong Zhang, and Ye Wang*

State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University,

Xiamen 361005, P. R. China

(Received June 23, 2003; CL-030562)

Vanadium oxide supported on SBA-15 exhibits superior catalytic performances for the partial oxidation of methane to formaldehyde. A space-time yield of formaldehyde as high as 93 mol kg_{cat.} $^{-1}$ h⁻¹ has been obtained with a formaldehyde selectivity of 94% over 3 wt % VO_x/SBA-15 catalyst, significantly higher than those reported so far.

Partial oxidation of methane directly into useful oxygenates such as methanol and formaldehyde remains as one of the biggest challenges in chemistry. A large variety of solid catalysts have been reported for the partial oxidation of CH₄ to HCHO with O2 under atmospheric pressure, but the reproducible HCHO yield is lower than 4%. ^{1–5} High HCHO space-time yield (STY) combined with high HCHO selectivity should be a key criterion for assessing a catalyst. So far, relatively high HCHO STY values have been reported over a few catalysts, e.g., ca. 40 and 27 mol kg_{cat}⁻¹h⁻¹ over Fe–Nb–B oxides and silica-supported vanadium oxide, respectively. ^{6,7} Recently, it has been shown that HCHO STY up to 75 mol kg_{cat} . $^{-1}h^{-1}$ can be obtained over the vanadium oxide supported on MCM-41, a mesoporous silica with high surface area.⁸ However, HCHO selectivity was lower than 30% over this catalyst under the conditions used for obtaining high STY values. As compared with MCM-41, SBA-15 possesses larger pores, thicker walls and higher thermal stability and may be a more appropriate support for the selective oxidation reactions occurring at high temperatures since the larger porous channels would be beneficial to the rapid desorption of a partial oxidation product. In this communication, for the first time, we report the excellent catalytic performances especially the high HCHO STY and selectivity of the SBA-15-suppoted vanadium oxide for the partial oxidation of CH₄ with O₂.

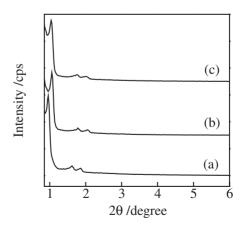

SBA-15 was synthesized in a similar manner as reported previously. ⁹ Typically, a homogeneous mixture containing Pluronic P123 triblock copolymers (EO₂₀PO₇₀EO₂₀) as a template and tetraethyl orthosilicate (TEOS) in hydrochloric acid was stirred at 35 °C for 24 h and further treated at 97 °C for 24 h to obtain as-synthesized SBA-15. The as-synthesized SBA-15 was collected by filtration followed by repeated washing with deionized water, drying in vacuum at 40 °C and calcination at 650 °C for 6h. Vanadium oxide (VO_x) was introduced into SBA-15 by an impregnation method. SBA-15 was immersed into an aqueous solution of NH₄VO₃, followed by drying and calcination at 650 °C. Thus prepared VO_r/SBA-15 was characterized by X-ray diffraction and N2-adsorption at 77 K to identify the mesoporous regularity. For comparison, VO_x/MCM-41 and VO_x/Cab-O-Sil were also prepared by the same impregnation method. The partial oxidation of CH₄ was performed on a fixed-bed flow reactor operated at atmospheric pressure. The products were analyzed by on-line gas chromatography.

Table 1 shows the BET surface area, pore volume and pore diameter obtained from N_2 -adsorption measurements. BET surface area and pore volume both showed a decrease after introducing 1 wt % VO_x (calculated based on the amount of V_2O_5) into SBA-15, and then kept almost unchanged with increasing VO_x content up to 3 wt %. Further increase in vanadium content significantly decreased the surface area and pore volume. The pore diameter was kept at 5.4 nm for the samples with VO_x content lower than 3 wt % and decreased slightly to 5.3 nm for the samples with VO_x content of 5 and 10 wt %.

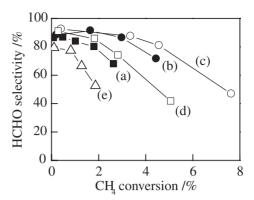
SBA-15 showed three X-ray diffraction peaks at 2θ of ca. 1.0, 1.6, and 1.9° assigned to its hexagonal mesoporous regularity. As shown in Figure 1, the three XRD peaks were also observed after the introduction of VO_x into SBA-15 and the intensities of the peaks were not significantly decreased, indicating

Table 1. Physical properties of the supported vanadium oxide catalysts

Catalyst	Surface area Pore vol.		Pore dia.
Cutaryst	$/\mathrm{m}^2\mathrm{g}^{-1}$	$/\text{cm}^3\text{g}^{-1}$	/nm
SBA-15	645	0.80	5.4
$1\% \text{ VO}_x/\text{SBA-15}$	545	0.68	5.4
$2\% \text{ VO}_x/\text{SBA-15}$	549	0.69	5.4
$3\% \text{ VO}_x/\text{SBA-15}$	560	0.72	5.4
$5\% \text{ VO}_x/\text{SBA-15}$	418	0.63	5.3
$10\% \text{ VO}_x/\text{SBA-15}$	321	0.57	5.3
$3\% \text{ VO}_x/\text{MCM-41}$	871	0.89	2.3
3% VO _x /Cab-O-Sil	166	_	_

Figure 1. XRD patterns of (a) SBA-15, (b) 2 wt % $VO_x/SBA-15$, (c) 3 wt % $VO_x/SBA-15$.

the sustaining of the hexagonal regularity at long range. These XRD peaks were still observable even when VO_x content increased to 10 wt % (not shown). It should be noted that no diffraction peaks of crystalline V_2O_5 were observed at high diffraction angles for the SBA-15-supported VO_x samples with VO_x content up to 10 wt %, suggesting that VO_x species are highly dispersed on the wall surface of SBA-15 or form small vanadium oxide clusters in the mesoporous channels which are hard to be detected by XRD.


Table 2 shows the catalytic performances of the supported VO_x samples for partial oxidation of CH_4 with O_2 at $625\,^{\circ}C$. SBA-15 alone showed very low CH_4 conversion although HCHO selectivity was 100%. CH_4 conversion increased remarkably with introducing VO_x into SBA-15 and reached a maximum at VO_x content of 3 wt %. The introduction of VO_x to SBA-15 formed CO in addition to HCHO. However, the selectivity to HCHO kept at >80% and only changed slightly with an increase in VO_x content from 1 to 3 wt % while CH_4 conversion rose from 1.0 to 4.6% at the same time. Further increase in VO_x content decreased both CH_4 conversion and HCHO selectivity significantly.

It is known that HCHO selectivity generally decreases with an increase in CH₄ conversion because of the consecutive oxidation of HCHO. HCHO selectivity versus CH₄ conversion obtained over the VO_x/SBA-15 with different VO_x content was thus compared in Figure 2. This figure clearly shows that the 3 wt % VO_x/SBA-15 is the best one for the partial oxidation of CH₄ to HCHO. Probably, the concentration of the monomeric vanadyl species responsible for the selective oxidation of CH₄ is the highest over this catalyst. The highest HCHO STY value obtained at 625 °C over this catalyst was 93 mol kg_{cat.} $^{-1}$ h $^{-1}$ with HCHO selectivity of 94% (Table 2). This STY value is significantly higher than those reported in literatures, and more importantly, much higher HCHO selectivity was obtained simultaneously. $^{1-8}$ HCHO selectivity of 94%

Table 2. Catalytic performances of the supported vanadium oxide catalysts for partial oxidation of CH_4 ^a

	, ,				
	Catalyst	CH_4	НСНО	НСНО	НСНО
		conv.	select.	yield	STY
		/%	/%	/%	$/\text{mol}kg^{-1}h^{-1}$
Ī	SBA-15	0.08	100	0.08	0.4
	$1\% \text{ VO}_x/\text{SBA-15}$	1.0	84	0.9	4.8
	$2\% \text{ VO}_x/\text{SBA-15}$	3.0	86	2.6	14
	$3\% \text{ VO}_x/\text{SBA-15}$	4.6	81	3.7	20
	$5\% \text{ VO}_x/\text{SBA-15}$	2.9	76	2.2	12
	$10\% \text{ VO}_x/\text{SBA-15}$	1.3	67	0.9	4.8
	$3\% \text{ VO}_x/\text{SBA-}15^{\text{b}}$	3.6	94	3.4	36
	$3\% \text{ VO}_x/\text{SBA-}15^{\text{c}}$	2.3	95	2.2	83
	$3\% \text{ VO}_x/\text{SBA-}15^d$	1.6	94	1.5	93
	$3\% \text{ VO}_x/\text{Cab-O-Sil}$	2.7	78	2.1	11
	3% VO _x /MCM-41	1.8	66	1.2	6.4

^aReaction conditions: T = 625 °C; catalyst, 0.1 g; total flow rate, $120 \,\mathrm{mL \, min^{-1}}$; $P(\mathrm{CH_4}) = P(\mathrm{O_2}) = 16.9 \,\mathrm{kPa.}$ ^bTotal flow rate, $240 \,\mathrm{mL \, min^{-1}}$; $P(\mathrm{CH_4}) = P(\mathrm{O_2}) = 16.9 \,\mathrm{kPa.}$ ^cTotal flow rate, $240 \,\mathrm{mL \, min^{-1}}$; $P(\mathrm{CH_4}) = 59.1 \,\mathrm{kPa}$; $P(\mathrm{O_2}) = 4.2 \,\mathrm{kPa.}$ ^dTotal flow rate, $240 \,\mathrm{mL \, min^{-1}}$; $P(\mathrm{CH_4}) = 97.1 \,\mathrm{kPa}$; $P(\mathrm{O_2}) = 4.2 \,\mathrm{kPa.}$

Figure 2. HCHO selectivity versus CH₄ conversion over the $VO_x/SBA-15$ with different VO_x content. (a) 1 wt %, (b) 2 wt %, (c) 3 wt %, (d) 5 wt %, (e) 10 wt %.

could also be sustained at a single-pass HCHO yield of 3.4%. To our knowledge, this is the highest HCHO selectivity combined with a reasonably high single-pass HCHO yield.

It has recently been reported that the $VO_x/SBA-15$ catalyzes the oxidative dehydrogenation of C_3H_8 and photo-assisted oxidation of CH_4 at low temperatures more efficiently than $VO_x/MCM-41$ and VO_x/SiO_2 , respectively. ^{10,11} Our results suggest that SBA-15 is also a better catalyst support for the partial oxidation of CH_4 . CH_4 conversion and HCHO selectivity obtained over $VO_x/SBA-15$ were both higher than those over $VO_x/Cab-O-Sil$ and $VO_x/MCM-41$. Further investigations on the advantages of SBA-15 as catalyst support for selective oxidations are underway.

This work was supported by the National Natural Science Foundation of China (Nos. 20021002 and 20273054).

References

- R. Pitchai and K. Klier, Catal. Rev.—Sci. Eng., 28, 13 (1986).
- N. D. Parkyns, C. I. Warburton, and J. D. Wilson, *Catal. To-day*, 18, 385 (1993).
- 3 T. J. Hall, J. S. J. Hargreaves, G. J. Hutchings, R. W. Joyner, and S. H. Taylor, Fuel Process. Technol., 42, 151 (1995).
- 4 K. Otsuka and Y. Wang, Appl. Catal., A, 222, 145 (2001).
- 5 K. Tabata, Y. Teng, T. Takemoto, E. Suzuki, M. A. Banares, M. A. Pena, and J. L. G. Fierro, *Catal. Rev.—Sci. Eng.*, 44, 1 (2002).
- 6 K. Otsuka, T. Komatsu, K. Jinno, Y. Uragami, and A. Morikawa, in "Proceedings of the 9th International Congress on Catalysis," The Chemical Institute of Canada, Ottawa (1988), Vol. 2, p 915.
- 7 A. Parmaliana, F. Frusteri, A. Mezzapica, M. S. Scurrel, and N. Giordano, J. Chem. Soc., Chem. Commun., 1994, 1609.
- 8 H. Berndt, A. Martin, A. Brucker, E. Schreier, D. Muller, M. Kosslick, G.-U. Wolf, and B. Lucke, *J. Catal.*, **191**, 384 (2000).
- D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B.
 F. Chmelka, and G. D. Stucky, *Science*, 279, 548 (1998).
- 10 Y.-M. Liu, Y. Cao, K.-K. Zhu, S.-R. Yan, W.-L. Dai, H.-Y. He, and K.-N. Fan, *Chem. Commun.*, **2002**, 2832.
- 11 H. H. Lopez and A. Martinez, Catal. Lett., 83, 37 (2002).